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Abshact The analysis of the singularity stmcture of some series arising in the conjugation 
theory of halomorphic maps is performed using the Pad6 approximants. The validity of PA is 
checked for functions whose analytic SINCOM is known: one observes that the numerical results 
are extremely sensitive to errors due to the use of a finite precision; normal or double precision 
used in FORTRAN codes is. in most cases, not sufficient to perform a numerical analysis of the 
singularity shuctllre. In order to have significant results at high orders all the computations were 
carried out using codes which allow us to operate with a sufficiently large number of digit% 
The case of linearizable diffeomorphisms and of mappings tangent to the identity of (C, 0) was 
considered: PA of both the direct and the inverse conjugating functions of a quadntic map to 
its normal form were computed and a comparison was performed with analytical results when 
available. When the singularity paltern was nnknown, the poles and the zeros of the PA provided 
a coherent picture, which in some cases allowed rigorous results to he established. 

1. Introduction 

The roots of integrability in dynamical systems are not yet understood but one can 
characterize the changes occumng between integrable and non-integrable systems by 
determining the singularities of the functions which conjugate each other. Non-integrable 
systems have a richer variety of topological structures in phase space since they have less 
symmetries. For Hamiltonian systems it is well known that nonlinear resonances change the 
topology of orbits, determining the appearance of singnlarities and the asymptotic character 
of the corresponding normal forms [l]. 

Even in the case of the simplest models, such as area preserving maps, the singularity 
analysis is difficult; some results have been obtained by combining perturbative and KAM 
estimates [2] and also by using low-order Pad6 approximants (PA) on the Fourier components 
[3]. The PA, which have been first applied to scattering problems in field theory and quantum 
mechanics [4-7], have also been used to detect the natural boundaries in the conjugation of 
a KAM curve with a circle for area preserving maps [8.91. 

In this paper we critically examine the use of Pad6 approximants [lo] in the simpler 
case of the conjugation of mappings of the complex plane [Ill.  This problem is relevant 
for Hamiltonian dynamics: indeed the angle analyticity of an invariant curve of a standard 
map is closely related to the analyticity in the Siege1 problem [12]. 

When the singularities of the conjugation function are known we can test the reliability 
of Pad6 approximants, and use them subsequently to explore the complex plane when no 
analyticity results are available. These tests are quite relevant because the construction of 
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rational approximations is very sensitive to the accuracy of the coefficients of the given series 
and high-order approximants computed with low accuracy typically have an abundance of 
poles accumulating on a closed curve (a circle), which is the natural boundary of a noise 
function [I31 as first observed in a numerical experiment by Froissart [14]. To this end 
all the algorithms have been developed in arbitrary floating point precision, and up to 
several hundreds of decimal digits were used in the actual computations [15]. In order to 
separate the real singularities from noise singularities the residue analysis is crucial: the 
noise singularities have a residue which is proportional to the round-off accuracy, while 
the hue singularities must have a bigger one. The analysis of residues allows one also to 
determine the quasi-analytic character of the function and the possibility of continuation 
across the natural boundaries [16,17]. 

We first consider very elementary examples such as rational functions with poles on the 
real axis or on a circle, to illustrate how the number of significant digits affects the presence 
of noise singularities and how ordinary machine precision does not allow one to overcome 
low orders. 

Following the investigation carried out by Xie [18] we examine the conjugation functions 
of a complex quadratic map z' = hz + zz with its linear part F' = A t ,  namely t = Y(z) 
and z = O(c), when the Julia set [19] is connected. 

If 0 < h c 1, Y is analytic with a natural boundary on the Julia set and only very 
high-order Pad6 approximants ( N  > 100) reproduce such a pattern. The analytic structure 
of the conjugating function O was not known and the PA have allowed us to determine it: 
all the singularities are on the real axes starting at the image of the critical point of the map, 
and the residues all have the same sign. It can be proved that Q is analytic in the cut plane 
and is a Stjeltjes function; the sheets of the Riemann surface are mapped into domains of 
the z-plane, which tasselate the Fatou set. If 1 i A c 3, then the poles of W are on the real 
negative axis and it can be proved that it is a Stjeltjes function. In both cases, the Stjeltjes 
property ensures uniform convergence of the PA to the function. 

If h is complex with a resonant phase 2 z p / q ,  then the singularifies are distributed on q 
rays; if A = kw,  with w / Z z  diophantine, they are all on a circle, whose image is the Siege1 
disc. 

The resonant parabolic map A = eit7p/q is no longer linearizable [20]: in this case one 
conjugates a generic map to the normal form, called the resonant standard shift, which has 
explicit iteration and invariants. Using the Borel transform [21] or other techniques [22] 
one can prove that the conjugating function can be re-summed to 2kq functions analytic 
on sectors, where k E Z. We considered small perturbations of the standard shift in the 
case tangent to the identity k = q = 1, limiting our analysis to order one in the small 
parameter (homologic equation) [=I: we show that the PA reproduce the analytic structure 
of the Borel transform of the conjugating function. In the case of the formal series which 
define the conjugation function VI, there is a strong numerical evidence that the PA re-sum 
the formal series to the values of the two functions analytic on sectors. 

In all the case8 analysed, the role of precision is of great importance; in order to carry out 
significant analysis one has to compute high orders using a correspondingly high accuracy. 
The inspection of residues allows the detection of the presence of poles due to round-off 
errors. If the computations are carried out using standard precision, then the number of 
significant poles (i.e. poles which are not due to round-off erron) does not increase with 
the order of PA, and is usually so low that no useful information can be obtained. 

The conclusion of the present work is that the PA are adequate to describe the singularity 
pattern of a conjugation function, especially when the singularity set is not a fractal 
boundary. 
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The plan of the paper is the following. In section 2 we introduce the definition of Pad6 
approximants and analyse the influence of the noise due to the machine round-off e m r  
for two functions having simple poles respectively on a straight line and on a circle. In 
section 3 the case of linearizable mappings of (C, 0) is considered: the analytic structure 
of both conjugation functions is analysed through the PA, and the relation with the Julia set 
and the precision needed to obtain significant results are discussed. The case of mappings 
tangent to the identity, which are not linearizable, is considered in section 4: the conjugation 
to the normal form (i.e. the standard shift) is analysed in the homologic case; the analytic 
structure of the inverse conjugating function and its Bore1 transform is obtained with 
analytic tools and a comparison with the results of the PA is given. 

2. Pad6 approximants and noise 

Given an analytic function f(z), z E C, with Taylor expansion f(z) = fo + fiz + . . . + 
fnz" + .. (convergent or asymptotic), its [ M I N I  Pad6 approximants are defined by 

where PM and QN are polynomials in z of maximum order M and N, respectively. If f(z) 
is a Stjeltjes function [lo], the sequence [ N  - 1/N], whose partial fraction expansion reads 

converges uniformly for N + CO to f ( x )  in any compact not intersecting the singularity 
set S, and the poles, which in the limit belong to S, have positive residues. This property, 
due the orthogonality of the polynomials z"Q~(l /z) ,  does not extend to other classes of 
functions, for which weaker convergence results (in measure or capacity) hold [24,2S]. 

Letting PN = U:=, ziN) one could expect that if for any N one can find a subset 
'$N C PN such that the sequence '?N converges with respect to the Hausdorff distance, 
then the closure of the limit set is S (in this way we exclude the wandering poles which 
determine the weak convergence to the function). 

In general, the distribution of zeros and poles provides some useful hint on the singularity 
strncture of the function; however, their numerical computation is usually non-trivial. Indeed 
the accuracy achieved on the coefficients of P N - 1 ,  QN with any of the algorithms (linear 
equations, continued fraction, recurrent relations) is basically the same and depends critically 
on the number of significant digits used in the calculations. To obtain all the zeros and 
poles of the [ N  - 1/N] PA within a desired accuracy all the computations have to be carried 
out with a number d of digits monotonically increasing with N .  If d is kept constant, while 
N is increased, a natural boundary due to round-off errors appears. Indeed the effect of 
using E = accurate arithmetic is equivalent to replacing the function f ( z )  with another 
function f 6 ( z ) :  

m 

(2.3) ff(z)'f(z)+~r(z)=Cfn(1+~r,)zn E =  10- d 

"=O 

where r ( z )  is a function with random coefficients r,, [261. If f, =, 1 and r. are random 
variables uniformly distributed in a compact set such as [-1,l], then theconvergence radius 
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is still 1; the poles of the PA of fc are with probability 1 on the unit circle, which is a natural 
boundary [13]. If fn # 1, the convergence radius R of r (z )  is the same as f(z) and r ( z )  
has a natural boundary on the disc of radius R. The poles of the PA due to noise have a 
residue proportional to E ;  this phenomenon was first observed by Froissart [14j, who studied 
the noise effect on the function f (2) = (1 - z)-' discovering that beyond the stable pole 
at z = 1 the remaining poles are distributed on the unit circle; each pole due to the noise 
has a nearby zero of the function f at distance E ,  and the residue of the pole is also of 
order E .  In some numerical examples it is observed that a few poles of [ N  - 1 / N ]  and 
[N/N] PA due to the noise are located at the interior of the convergence disk. Even though 
one could expect that the internal poles migrate to the boundary of the disc y as N + 00, 

it is worthwhile remarking that the observed property is true (Szego theorem 1271) for the 
polynomials orthogonal with respect to a positive (random) measure on y which differ from 
the denominator of the Pad6 approximantst. 

In this section we analyse two examples: a rational fraction with poles on the real axis, 
and a rational fraction with poles on the unit circle. Let 

be a rational fraction for which [n - l/n],(z) = f (2) for n 2 N .  We observe that 

N 1  
fn =cp  

k l  

so that the last coefficient fW-1 needed to compute the [ N  - 1/N] Pad6 is given by 

1 1 N - l  

fZN-1 = f + "+i 
k=2 

(2.4) 

(2.5) 

and the last term is the contribution of the last pole to the coefficient f Z ~ - l .  We expect 
that, using a precision of d digits, the Nth pole can be reproduced with an accuracy of 4 
digits if its confxibution NdZN- '  to the coefficient f Z N - l  is at least of order lo-@-&); this 
leads to the estimate 

d = do + ( 2 N  + 1)  loglo N .  (2.7) 

For N = 10 and & = 8 we have d = 29 corresponding to ordinary quadruple precision, 
while for N = 100 we have d = 410. In figure 1 we show the results for N = 50 by 
displaying the poles of the [49/50] PA for d = 20 and d = 200t. In the first case the noise 
disc is very evident and their residues are in the second case the true poles are well 
reproduced and no noise effect is present. The second function we consider is given by 

t The orthogonal polynomials ax with respect to a positive measure and the denominators Q~ of the I N - I I N I  PA 
ye related by r j a c r ) = r N Q M ( l l x )  only if the support of the mwure is on the real axis. 
$Throughout the paper the zeroes of QN(Z)  (even when the consmaion ofthe PA was carried out at low accuracy) 
were computed with high accuracy (d = ZOO), using a routine based on the Laguene method the zeroes were 
checked by evaluating the polynomial, 
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I I l m t  , , I I , , , . , ~ 

.. . . Om . 
.. ... .... ? 

-1.W 

( a )  -1.W 0.W 1.03 200 3.W 4.W 5.W 6.W 7.W 8.03 9.W lam 

( b )  .1.W (LW l .W 2.M 3.W 4.W 5.W 6.W l.W IIW 9.00 10.W 

Figure 1. Pales of [49/501 PA of function 1 with (a) d = 20, (b )  d = 200. The size of the dots 
is proportional to the logarithm of the absolute value of the residues. 

where o is the golden mean (8 - 1)/2 and Dm is a closed symmetric subset of [O, 1[ 
defined by the union of the intervals [2k/(2m), (2k + 1)/(2m)] for k = 0,. . . , m - 1 if 
m 2 1, and [0, 1[ itself for m = 0. If m = 0, the poles distribution tends to be uniform on 
the circle as N -+ CO; the effect of noise is not relevant up to comparatively higher orders 
such as N = 50 for d = 20. For low values of m the distribution is far from uniform 
and the effect of noise is more important; unless a careful examination of the residues is 
made it  is difficult to distinguish the support of poles working at low accuracy. The same 
phenomenon would be observed if the poles are dishibuted on the partitions of a Cantor 
set. 

3. Linearizable maps 

We consider the linearization of a polynomial map 

2' = F ( z )  = 4 + f(z) 2 E c 
where f ( z )  is a polynomial and Ihl # 1 or h = , with o/2z a Bjuno number [28]; 
it is well known that under such conditions F ( z )  is analytically conjugated to its linear 
part. It follows that any two polynomial maps with the same linear part i z  are analytically 
conjugated and therefore, without loss of generality, we shall restrict OUT analysis to the 
quadratic map. The multiplier h is the topological invariant of the map and determines the 
topology of the orbits. 

We define the conjugating function @(<) according to 

so that the linearized map reads 

3' = ny 
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and 0, @ are implicitly defined by 

(3.4) 

The inverse function Y(z) @-'(z) 

m 
5 = U,(z) = z + @(z) $(z) = @"Z" (3.5) 

"=2 

satisfies the functional equation 

U, o F(z) = AU,(z) $'(At + f(z)) - A $ W  = - f ( z ) .  (3.6) 

In the quadratic case f(z)  = za the recurrences are very simple and letting @ I  = $'I = 1 
we have for n 2 2 

A simple estimate based on majorant series gives a convergence radius for @ of at least 
IAl(1 - lW/4. 

3.1. Real multiplier: A = 

We first consider the case of a quadratic map with A real. This map has two fixed points, 
an attractive one at the origin and a repulsive one at z = 1 - A ,  while its critical point is at 
zE = -A/2. The function V(z) is analytic within the Fatou set F [19] and is given by 

c I 

vz E 3 F""(z) @(e) = lim - 
a-m A" 

As a consequence we expect that for 0 < A < 1 the poles and zeros of the PA accumulate 
on the Julia set 3, which is connected in this parameter range. We also recall that 3 is 
the closure of the unstable fixed points of the map and that the preimages F"-"(z,) of the 
critical point accumulate on 9 [19]. When A = f l  the map is no longer linearizable since 
F or FQ2 are tangent to the identity; for A = 1 this is evident since the attractive and 
repulsive fixed points collapse. 

In figures 2 and 3 we display the poles of the [lOO/loO]~(z) PA computed with different 
numbers d of decimal digits, and compare them with the Julia set. The distribution of the 
poles and of the zeros follows the Julia set very closely, in the case of high accuracy 
computation (see figure Z), whereas it has a very poor resemblance when the accuracy is 
low (see figure 3). At the lowest accuracy the noise circle prevails and gradually the Julia 
set emerges from evident competition with noise. Even more interesting is the smcttue 
of the direct function @ ( I )  = U,-'(<). Also in this case with moderate accuracies the 
noise circle is still well present and only at the accuracy of d = 200 does it disappear-see 
figure 4. The emerging analytic structure is surprisingly simple, all the poles are on the 
real negative axis and their residues have the same sign, and it can be proved that C' is a 
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50 

Figure 2. Julia set of the quadratic map with (a) i = 4 and (b)  poles of [100/100]~, for 
d = 200 

-1.33 4.50 0.M 0.50 1.M 1.50 -1.00 450 0.W 0.50 1.M 
(0) ( b )  

Figure 3. (a)  Poles of [lOO/lOO]* for the quadratic map with A = 
and (6)  tasselation of the analyticity domain of V into univalence domains. 

computed with d = 16 

Stjeltjes function. It can be checked that the first pole cc is the image of the critical point 
I'c = * ( z d  

The above-quoted properties can be explained according to the following scheme. Let 
us denote by Fg' the inverse functions of F: 

&?-$ - -A*- 
2 + -  (3.9) 

then the preimages of the critical point are 

zo = zc Zb = F&) . . . zk ,,..,, ka Fk;' 0 . .  . o FG'(zc) ki = il . (3.10) 

One can prove that zk,,....k, are critical points of Q: in fact, differentiating (3.6), we have 
Q'(F(2) )  F'(z) = XY'(z) and consequently for z = zc, since F'(z,) = 0, we have that 
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M 

Figure 4. Poles of [100/100]~ for the quadratic map with A = $ computed with (a) d = 16 
and (b)  d = 200. 

Y'(z,) = 0. A similar argument holds for the preimages of ze. Moreover, one has that 
Y(za,...,kn) = A-"W(&): this can be proved by writing (3.6) as Y(F-'(z)) = A-'Y(z), 
which implies W(zk,, .... k,) = A-"Y(z,). The images of the critical points of F under the 
transformation Y are the poles of @, which are therefore cc, . . . , A-"<cc. This explains 
the pattern shown in figure 4. The tessellation of the analyticity domain of YJ in domains 
where Y is injective is shown in figure 3(b). Each domain of the tasselation is mapped 
through Y into a sheet of the Riemann surface of @. 

3.2. Real multiplier: 3 > h = ea > 1 
In this case it is well known from Poincar6's theorem that a(<) is an entire function. 
Indeed by majorant series one proves that @ is analytic in a disc and the relation 
@(<) = Fa" o @(A-"<) allows one to extend the analyticity to a disc of radius k"r and, n 
being arbitrary, Q(r )  is entire. When h = 2 in the quadratic case one has 4(<) = et - 1. 
For h > I ,  the origin becomes an unstable fixed point and the Julia set is no longer an 
obstruction to the conjugation with the linear expanding map; the obstruction appears at the 
stable fixed point. 

The poles of the PA to @ are located on a circle of large radius, as is usual for entire 
functions. The poles of high accuracy PA of * (e )  are located on the half line ] - 00, ZA], 
where ZA = 1 - A is the attractive fixed point and the residues =e all positive, and it can 
be proved that Y is a Stjeltjes function. The situation is analogous to the previous case, 
where now the roles of Y and 0 are interchanged. The iterate of zc falls on the cut since 
F(z,) < Z/L  and it is now false that the critical point of F and its preimages are critical 
points of Y (we remark also that accumulate at the origin). Conversely, differentiating 
(3.4). one has 

h@'(A<) = F'(@(<))@'(<) (3.11) 

and since Cc is a regular point of @(<), and F'(Q(cc)) F'(z,) = 0, it follows that 
= 0. Similarly, differentiating (3.4) iterated n times one proves that @'(,?"~J = 0. 

Therefore, we have proved that the function 4 has critical points at I."<, where @(<,) = zc 
and on their images Q(h"b)  = F""(zc) the function Y has square-root-type branch points. 
For h = 2 we have a limit case since the image of the critical point is Cc = -00 and the 
function @ is injective in the whole complex plane. 
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3.3. complex multiplier: A = e-'+ibp/q 

When the coefficient h in die map (3.1) is complex, h = h, = exp[i2np/q -a] with a real 
positive and p ,  p two integer numbers with no common divisor, the analyticity properties 
of the conjugation function are similar to the case of A real. The main difference is that 
O(<) is now analytic in the %-plane cut along q rays rather than a single one. Indeed 
in this case the pre-images of the critical points z t ,  ..., k, are mapped into Cn = e"'+i2nnp/'? 
and these spiralling points are organized into q half lines. This is c o n h e d  by numerical 
computations: in figure 5(u) we show for p = 1, q = 3 the poles of the PA to the function O 
which at high accuracy are organized on three lines, whereas at low accuracy the competition 
with the noise circle makes them barely recognizable. 

We have checked that the starting points of the rays are just the Y transforms of the 
critical point and its q - 1 pre-images. The function in this case is analytic in the <-plane 
cut along q rays and on each ray there is a sequence of branch points of squareroot type; 
each Riemann sheet is mapped into a domain where Y is single-valued. This tasselation of 
the Fatou set can be explicitly constructed [29]. 

I:" 

I. 

0. 

.W 

Figure 5. Poles of (a) [100/100]~ for the quadratic map with h = 0.9e"'/3 computed with 
d = 200 and of (b) [150/150]~ with 1 = O.99eaiw, d =ZOO and w set to the golden mean. 

3.4. The Siegel case: h = eiw 

We have analysed the case of h = eiw-u for w/2n irrational and equal to the golden mean 
(& - 1)/2 for 01 t 0; the limit case a = 0 corresponds to the Siegel problem. For 
a 0 the Pad6 show several rays which can still be interpreted as cuts emerging from the 
points cn = eun+ino which spiral to 00. When a + 0 all the rays converge densely to a 
circumference of finite radius, whose image in the z-plane is the boundary of the Siegel disc, 
which is a fractal obtained by iterating the critical point. We consider the poles of the PA, 
computed with high accuracy, as a approaches zero and their distribution fully confirm the 
above picture, and show a hierarchical organization corresponding to the leading resonant 
approximations p/q to the golden mean (q = 13 in figure S(b)). When a = 0 almost all 
the poles are on the boundary of the disc 151 = r, and no pole is inside; in this case the 
effect of noise is not relevant, as observed for the function (2.8). 
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0.so 

I 
450 0.W am .W 

Figure 6. Poles of [100/100]m PA for lhe Siegel problem with golden mean frequency will 
d = 200. 

The Siegel problem is relevant since it is closely related to the circle map or the standard 
map if we let z = eie and consider the analyticity properties in the complexified angle 6'. as 
proposed in [30,31]. 

4. Non-linearizable maps 

We consider a map tangent to the identity A = 1; in this case a map having a non-zero 
quadratic term can be formally conjugated to 

(4.1) 

where y is a parameter which depends on the map we are considering, and is called 
the formal invariant [20-331. The conjugation equation is more conveniently written by 
changing the variable according to w = z-' so that the map becomes p(w) = l/F(w-'): 

z = z - z2 + ( I  - y)z3 

- 
(4.2) 

Y -  w' = R w )  = w + 1 + - + f(w) f(w) = O(w-2).  
W 

The normal form in the case tangent to the identity is the standard shift [20, 341 

t (' = - 
I + (  (4.3) 

which in the inverse coordinates q = 5-I takes the form q' = q + I .  The standard shift 
is an integrable map and has explicit iteration and interpolating flow: the orbits in normal 
coordinates are interpolated by the straight lines ~ ( t )  = 70 + t parallel to the real axis and 
their images in the {-plane, ( ( f )  = (o(l + t ( ~ ) - ~  are families of circles tangent to the real 
axis at the origin. 

The conjugation function V(w) = I/w(z) satisfies the functional equation P o F = 
\II + 1; choosing q ( w )  = w - y log w + F ( w ) ,  where 7 = O(w-I), one has 

_ -  
- 

(4.4) 
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The RHS of (4.4) is O(w-') and the formal solution T(w) is therefore well defined. 
We analyse mappings which are small perturbations of the standard shift 

Z Z2 z' = ~ ( z )  = - - €- f ( z )  + O(& 
l + z  (I+Z)Z 

w' = w + 1 + E T ( ~ )  or (4.5) 

where T(w) = O(w-') so that the formal invariant is preserved. We consider the homologic 
equation [23], i.e. conjugation at the first order in E ,  which is assumed to be a small 
parameter; letting W(z) = z+c@(z)tO(c2) andV(u1) l/*(w-I) = u r + ~ q ( w ) + O ( ~ ~ )  
where w = z-', the equations satisfied by @ and 5 read 

- We have two solutions Tl(w), q z ( w )  of ( 4 6 ,  related to the boundary conditions 
@1(+w) = 0, Tz(-w) = 0, which are expressed by 

(4.7) 

- -  
Using Borel re-summation one can prove that $,, @* are analytic on sectors [2&22], and 
have the same asymptotic expansion T ( w )  = Tk &-': letting TB(f)  = Ck(Fk/k!) tk  
be the Borel transform of the formal series q ( w ) ,  then the re-summed function can be 
defined by 

and analytic continuation is obtained by rotating the integration axis peie as far as the first 
singularity of TB(t) is encountered. Indeed, if we take the Borel transform of the functional 
equation (4.6) one has 

e-'?&) - TB(r) = T B ( t ) .  (4.9) 

If f (z) is analytic in a disc of radius r then T(w) is analytic in the exterior of a disc of 
radius r - ]  and TB(f) is an entire function. As a consequence the only singularities of qB(t) 
are poles on the imaginary axis at t = 27rik with k E Z \ (0): 

(4. LO) 

Since f(w) is analytic over IwI > I/r, using (4.7) one immediately checks that T,(w) and 
@z(w) are analytic in two domains D1, Dz whose complements are obtained by translating 
the disc IwI 6 r-' to the left and to the right, respectively (see figures 7(a) and (b)). The 
image of D1 in the z-plane is the union of a half-disc of radius r in the Re z > 0 half-plane 
and two half-discs of radius r /2  on the opposite side, and similarly for Dz (see figures 7(c)  
and (4). 
- We choose the example where f(z) has a simple pole f(z) = zz( l  - a$' so that 
f(w) = [w(w - a)]-' and TB(t) = (e"' - ])/a. We demand that a E 4 \2 ,  since if a is 

- 
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Figure 7. Sketch of the analyticiQ domain of ++I in the (a) w- and ( e )  r-planes and ihc same 
for h ( (b)  and (0. 

an integer then the zeros of ea' - 1 exactly cancel the poles of the denominator of Se@), 
The domains D1, Dx are the complements of the sequences of points w = -n ,  w = a-n for 
n 3 0 and w = n, w = a + n for n > 1 respectively. Integrating (4.8) along a line t = peie 
the analyticity domain of $(w)  is determined by the growth of lTB(r)l; the non-analyticity 
domains ] - w, a] and [O, +CO[ are not minimal but contain the previous ones, and their 
images in the z-plane are ] - 00, 01 U [a-', +CO] and [O, too[, respectively. 

In figure 8 we quote the poles of the [100/100] PA to SB(f) computed with different 
accuracies. At low accuracy the presence of the noise circle is evident and there is no 
resemblance with the true analyticity smcture. At very high accuracy a large number of 
poles on the imaginary axis is obtained together with their residues. Other poles lying on 
a large half-circle are stable against further increase of the accuracy and are due to the 
truncation of the series. Indeed the radius of the circle increases linearly with the order of 
the PA and these poles as N + 03 cluster at infinity to reproduce the essential singularity 
of the exponential function. 

The behaviour of the PA for the function $(z) is also quite interesting; indeed, in this 
case there are two functions and $2 defined in the domains DI and DZ with the same 
asymptotic expansion. The presence of the singularity at z = 0 makes the radius of the 
noise disc equal to zero as well. Indeed, at low accuracy there is a cluster of poles at 
0 which disappear when the accuracy is sufficiently high (see figure 9(a)). The poles of 
$ ( z )  in the plane z ,  computed with high precision (see figure 9@)), are distributed on a 
circle, whose radius appears to be r = l / ( a  + 1) to a good accuracy, and the values of 
the function in the inner and outer parts of the circle agree with $1 and which can be 
obtained by numerically evaluating the integral (4.8). This structure can be understood by 
analysing the poles in the variable w = l/z: the sequence of poles are distributed on two 
perpendicular axes, namely the real positive axis (where both determinations @I and @2 

have simple poles), and a line parallel to the imaginary axis, which corresponds to the cut 
placed by the PA: on the right-hand part of the plane w (i.e. inside the circle in the z-plane), 
the PA re-sum the formal series to $1, and on the left-hand part (i.e. outside the circle in the 
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Figure S. Poles of the [lOO/lOO] PA of %(f) solution of the homologic equalion of a map 
tangent to the identity computed with low accuracy ( a )  d = 16 and high accuracy (b) d = 200. 

Figure 9. Poles of the [1CQ/100] PA of V(z) for the homologic equation of a map tangent to 
the identity mmputed with low acmacy (a) d = 16 and high accuracy (6) d = ZOO. 

z-plane), to +*. The abscissa of the cut is the average of the first pole of +2 (i.e. w = 1) 
and the last pole of +* (i.e. w = a). An exponential relation between the values of the 
residues and the distance of the position of the poles from the origin (in the z-plane) can 
be found and a complete characterization of the cut in the neighbourhood of the orisn can 
be given; we refer to [35] for a complete analysis. 

5. Conclusions 

From the present analysis it emerges that the PA are adequate to describe the singularity 
pattern of the conjugation functions of holomorphic maps in the linearizable case, be it 
hyperbolic or parabolic, and even for a map tangent to the identity, provided that a sufficient 
accuracy is used. It must be pointed out that when a low number of digits is used the noise 
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disc obscures completely the true singularity structure. Singularity patterns symmetric with 
respect to the origin are better reproduced than asymmetric ones, regular patterns better than 
fractal patterns. When the singularities are on a circle, in order to distinguish the case of 
a probable natural boundary from a porous one, one has to use high-accuracy evaluations 
and careful inspection of the residues; otherwise a natural boundary will, in general, appear 
because the holes are filled by the noise poles. 
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